Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 137(3): 73, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451354

RESUMO

KEY MESSAGE: The NIAB_WW_SHW_NAM population, a large nested association mapping panel, is a useful resource for mapping QTL from synthetic hexaploid wheat that can improve modern elite wheat cultivars. The allelic richness harbored in progenitors of hexaploid bread wheat (Triticum aestivum L.) is a useful resource for addressing the genetic diversity bottleneck in modern cultivars. Synthetic hexaploid wheat (SHW) is created through resynthesis of the hybridisation events between the tetraploid (Triticum turgidum subsp. durum Desf.) and diploid (Aegilops tauschii Coss.) bread wheat progenitors. We developed a large and diverse winter wheat nested association mapping (NAM) population (termed the NIAB_WW_SHW_NAM) consisting of 3241 genotypes derived from 54 nested back-cross 1 (BC1) populations, each formed via back-crossing a different primary SHW into the UK winter wheat cultivar 'Robigus'. The primary SHW lines were created using 15 T. durum donors and 47 Ae. tauschii accessions that spanned the lineages and geographical range of the species. Primary SHW parents were typically earlier flowering, taller and showed better resistance to yellow rust infection (Yr) than 'Robigus'. The NIAB_WW_SHW_NAM population was genotyped using a single nucleotide polymorphism (SNP) array and 27 quantitative trait loci (QTLs) were detected for flowering time, plant height and Yr resistance. Across multiple field trials, a QTL for Yr resistance was found on chromosome 4D that corresponded to the Yr28 resistance gene previously reported in other SHW lines. These results demonstrate the value of the NIAB_WW_SHW_NAM population for genetic mapping and provide the first evidence of Yr28 working in current UK environments and genetic backgrounds. These examples, coupled with the evidence of commercial wheat breeders selecting promising genotypes, highlight the potential value of the NIAB_WW_SHW_NAM to variety improvement.


Assuntos
Poaceae , Triticum , Triticum/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Genótipo
2.
Plant Genome ; : e20288, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36718796

RESUMO

Genome-wide introgression and substitution lines have been developed in many plant species, enhancing mapping precision, gene discovery, and the identification and exploitation of variation from wild relatives. Created over multiple generations of crossing and/or backcrossing accompanied by marker-assisted selection, the resulting introgression lines are a fixed genetic resource. In this study we report the development of spring wheat (Triticum aestivum L.) chromosome segment substitution lines (CSSLs) generated to systematically capture genetic variation from tetraploid (T. turgidum ssp. dicoccoides) and diploid (Aegilops tauschii) progenitor species. Generated in a common genetic background over four generations of backcrossing, this is a base resource for the mapping and characterization of wheat progenitor variation. To facilitate further exploitation the final population was genetically characterized using a high-density genotyping array and a range of agronomic and grain traits assessed to demonstrate the potential use of the populations for trait localization in wheat.

3.
Curr Biol ; 28(19): 3165-3173.e5, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30270188

RESUMO

Efficient soil exploration by roots represents an important target for crop improvement and food security [1, 2]. Lateral root (LR) formation is a key trait for optimizing soil foraging for crucial resources such as water and nutrients. Here, we report an adaptive response termed xerobranching, exhibited by cereal roots, that represses branching when root tips are not in contact with wet soil. Non-invasive X-ray microCT imaging revealed that cereal roots rapidly repress LR formation as they enter an air space within a soil profile and are no longer in contact with water. Transcript profiling of cereal root tips revealed that transient water deficit triggers the abscisic acid (ABA) response pathway. In agreement with this, exogenous ABA treatment can mimic repression of LR formation under transient water deficit. Genetic analysis in Arabidopsis revealed that ABA repression of LR formation requires the PYR/PYL/RCAR-dependent signaling pathway. Our findings suggest that ABA acts as the key signal regulating xerobranching. We conclude that this new ABA-dependent adaptive mechanism allows roots to rapidly respond to changes in water availability in their local micro-environment and to use internal resources efficiently.


Assuntos
Ácido Abscísico/metabolismo , Grão Comestível/metabolismo , Raízes de Plantas/metabolismo , Adaptação Psicológica/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Grão Comestível/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Meristema/metabolismo , Organogênese Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas , Transdução de Sinais , Fatores de Transcrição/metabolismo , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...